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The AtmosphereThe Atmosphere
composition: 78.0% N2

21.5% O2
0.5%Ar

barometric formula: ρ(h) = ρ(0) exp (-h/h0)

ρ(0) = 0.00123 g/cm3 at sea level
h0 ~ 7 km

Total (vertical) thickness T of atmosphere: ~1000 g/cm2

Pressure at sea level: 1 bar 1 mbar = 1 hPa
P ~ T . g = 1000 g/cm2 . 9.81 m/s2 ~ 105 N/m2 = 105 Pa

(temperature complicates things....
“adiabatic atmosphere”)

All other components
(e.g. CO2, H2O, ...) are << 1%
and can be neglected.

Chacaltaya (5200 m a.s.l.):
r = 0.59 r0, T = 538 g/cm2
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The natural scale for the shower development is
the atmospheric thickness t (in g/cm2), not the height (in cm).

(the number of scattering centers matters, not the distance travelled.)

Characteristic lengths: X0 radiation length, λ0 interaction length

Atmospheric Thickness (=mass overburden)

T(h) = ρ(h) dh = ρ(0) h0 exp(-h/h0)

Shower development: N(t) ~ c . ta . exp(-bt)

8

h
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T increases with zenith angle θ
T(θ) ~ T(0) / cos θ for θ < 70o

T(θ) ~ for θ = 90o

T(θ) < T(0) / cos θ for θ < 70o

T(θ) ~ 36 T(0) for θ = 90o

“flat” atmosphere

“curved” atmosphere
8

T (g/cm2)

log N mountain altitude

sea level

θ = 60o

θ = 0o

1. Compare experiments at different altitudes.

2. Study the longitudinal shower development
by varying q and look for signatures
with the same frequency
(constant intensity method)θ = 60o

θ = 60o

A vertical 1020 eV shower has its maximum near sea level (Tmax ~ 1000 g/cm2).

A 1020 eV shower at >70o (T > 3000 g/cm2) is almost completely absorbed in the
atmosphere (just muons survive).
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The Atmosphere in CORSIKAThe Atmosphere in CORSIKA

> 100 km
40 ... 100 km
10 ... 40 km

4 ... 10 km
0 ... 4 km

US Standard Atmosphere (parameterized by J. Linsley in 5 layers)

exponential
density variation

linear

ρ(h)
T(h)
h(T)

ρ(0) = 0.00123 g/cm3

T(0) = 1036.1 g/cm2

h(T=0)= 112.8 km
implemented as functions

78.0% N2
21.5% O2

0.5% Ar

Position of next interaction follows exponential in t
but a small dt may correspond to huge dh since T ~ exp(h/h0)

t (g/cm2)

dN/dt

~exp(-t/λ0)

h (cm)

dN/dh
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Position of next interaction of a particle depends on the matter traversed (i.e. T).
dN/dx ~ exp (-x/λ0)

Position of decay of a particle depends on time past (i.e. t) or distance travelled (s).
dN/dt ~ exp (-t/τ) and since t = s/c = x/ρc dN/dx ~ exp(-x /ρcτ)

What if interaction and decay compete, e.g. for π± ?

in MC very simple: Calculate independently a decay point and an interaction point.
Select the mechanism that happens first.

1.) draw a random path xi from the distribution exp (-x/λ0) to get interaction point
2.) draw a random time td from the distribution exp (-t/τ) to get decay point
3.) convert time td into a distance xd = td c ρ.
4.) If xi < xd , then an interaction happens, otherwise a decay.

This is actually how nature does it.

Decay or Interaction ?Decay or Interaction ?



Johannes Knapp, Arequipa 2008

1

10

10 2

10 3

10 4

0 200 400 600 800 1000
atm. depth T (g/cm 2 )

E
(G

eV
)

Decay

hadronic interaction

π±

K±

low density high density

Decay or Interaction ?Decay or Interaction ?

decay: pd(t) ~ exp(t/τ) τ = lifetime

interaction: pi(x) ~ exp(x/λ) λ = interaction length

analytic: ptot
-1 = pd

-1 + pi
-1 difficult, since exponentially varying atmospheric density
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Cherenkov Light Production in Air
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as well as the layering.
Variation of atmospheric conditions:

(to be measured by balloon sondes
at the site,
e.g. after each > 1020 eV event ?)

Atmosphere is changing all the time ....

B. Keilhauer
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E < Eth E > Eth

p ~ Ei / ΣEi p ~ Ei / Eth

Simulation Speed-UpSimulation Speed-Up
Computing time ~ 1 h x E/1015 eV Disc space ~ 300 MB x E/1015 eV per shower.

At 1020 eV : more than 1011 secondaries !!!
excessive resources needed per shower : ~ 105 h = 11 years ~ 30 Tera Bytes

No way (nor need?) to follow them all: statistical sampling “Thinning”

Standard method:
(by A.M. Hillas)

define the thinning threshold Eth= εthE0
E > Eth follow each particle
E < Eth follow only one (or few),

but give it a weight to account for
the discarded particles: wi’ ~ wi 1/p
energy is conserved
mean Ne,γ,µ are preserved

but : fluctuations are enlarged artificially

Added weight increases output per particle (8 words instead of 7),
but computing time and number of particles to be written out are greatly reduced.

+
+
-
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The smaller Eth ,
the better the shower is modelled
& the larger the computing time.

The smaller Eth ,
the better the shower is modelled
& the larger the computing time.

Which is the right thinning level?Which is the right thinning level?

0 5 10log10(wt)

lo
g(

N
)

longitudinal development N(t):
very many particles in the shower core, i.e.
low thinning level is sufficient (Eth ~ 10-4 E0)

particles far from shower core, e.g. S(r) in Auger:
small particle density requires good thinning (Eth < 10-7 E0)

Artificial fluctuations due to thinning should be smaller than the intrinsic shower fluctuations
(to be checked for the variable in question...)

Computing time and disk space are reduced, but do still grow proportional to E0.

Particle weights can go up to wmax = Eth / Emin ~ 1020 x 10-6 / 105 = 109

start end of thinning (Emin = low energy cut-off)

High weights are problematic:
Is there a way to avoid them ?
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Weight Limitation and Optimum ThinningWeight Limitation and Optimum Thinning

Avoid too high weights by setting a maximum allowed weight wmax (e.g. 105).
If weight gets larger, follow all particles again.

Of course, weight limitation increases run time again.

Which is the best setting of Eth and wmax ?
i.e. which minimizes the statistical error for a given run time?

Optimum thinning for a given εth

wmax = E0 (in GeV) . εth

1018 eV εth = 10-6 wmax = 103

1019 eV εth = 10-6 wmax = 104

1020 eV εth = 10-6 wmax = 105

The run time is only dependent on εth , no longer on energy.

10-5 optimum thinning is about as good as 10-7 thinning without weight limitation.

Eth/wmax

E0

Eth
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dNe+e-γ µ+µ-

Since g and e+e- are much more abundant (x100) than µ+µ- or hadrons

we set different εth and wmax for γ & e+e- than for µ+µ- or hadrons.

e.g.: proton 1019 eV 37o

γ , e+e-: εth = 10-6 wmax = 104

µ+µ-, h: εth = 10-8 wmax = 102

1 particles with weight 105 stands for
10 particles with weight 104 or
105 particles with weight 1

muons produced
in photo production
from photons with weight >102



Johannes Knapp, Arequipa 2008

How to treat a particle with a high weight once it hits a detector ???How to treat a particle with a high weight once it hits a detector ???

A particle with weight stands for many otherswith different
masses, energies, angles, impact points.

Some sort of un-thinning is needed (e.g. method used in Auger)

100
100

1

11

1

1

1

1

1 1

1 1

1 1

1

1 1

1

1

Instead of N particles with high weights wt on a small area A,

use N.wt particles, each with weight 1, from a larger area A.wt.

Problem: For wt > 105 the area becomes so large (~ distance between detectors)
that particle densities, energies, ... will change from one side to the other.

There is no ideal method to get rid of the weights again.
Some of the information has been lost in the thinning process.
There is no ideal method to get rid of the weights again.
Some of the information has been lost in the thinning process.
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Other speed-up tricks?Other speed-up tricks?
All tricks come at a cost !
Speed-up mechanisms cause biases and distortions.
Careful checks are needed that they don’t invaluate the results.

Example: early KASCADE simulations:

Low-energy electromagnetic subshowers created high in the atmosphere
were discarded (x3 speed-up, with bias of less than 3%)

When higher energies were simulated,
this speed-up caused a large bias which led to wrong results.
Massive simulations had to be repeated after the problem was found.

Use parallel processing?Use parallel processing?
In principle possible: do first interaction & distribute secondaries on different processors

But we usually need more than one shower to evaluate fluctuations.

Best way to parallelize: run on each processor one shower
to avoid any inter-processor communication.

e.g. processor farm in Lyon (~1000 processors + lots of storage space)
70,000 showers for Auger, ~150 processor years, 20 TB



Johannes Knapp, Arequipa 2008

Measure tmax or Nmax
and estimate E0.

Measure tmax or Nmax
and estimate E0.

Electromagnetic Showers: from Toy Model to EGS4Electromagnetic Showers: from Toy Model to EGS4

basic reactions: photons: pair production
electrons: bremsstrahlung

e

e
e

eγ
γ

Both reactions have the same scale length (X0) and have two outgoing particles per incoming particle.

Toy Model (one-dimensional, very simplified, yet qualitatively correct):

0

X0

2X0

3X0

E0

E0/2

E0/4

E0/8

E0/16
4X0

particle multiplication (x2) in each step (X0) until E < Ecrit ,
then particle losses due to ionisation dominant.

t = k X0 , k = 1,2, ...

N = 2k E = E0/N

kmax: E0 / 2kmax = Ecrit kmax = ln(E0/Ecrit) / ln(2)
grows only logarithmically with E0

tmax = kmax
. X0

Nmax = E0/Ecrit
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Nishimura Kamata Greisen (NKG): Longitudinal Shower DevelopmentNishimura Kamata Greisen (NKG): Longitudinal Shower Development
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S =

EGS calculations

analytic description of purely electromagnetic showers:

Ne = s =
0.31 exp( t (1-1.5 ln s))

ln(E0/Ecrit)
3 t

t + 2 ln(E0/Ecrit)

Just average,
no fluctuations.

Ne :

number of electrons
down to energy 0 ?

(unphysical)
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Nishimura Kamata Greisen: lateral shower developmentNishimura Kamata Greisen: lateral shower development

purely electromagnetic showers:

ρe = Ne
2πrm2

r
rm
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modified Moliere-Radius rm

Moliere-Radius rmol

110 m a.s.l10 17 eV

10 16 eV

10 15 eV

10 14 eV

10 13 eV

EGS calculations

rm = (0.78 - 0.21 s) rmol

rmol = X0 Es/Ecrit
~ 9.6 g/cm2

~ 78 m at sea level

Es = mec
2 (4p/a)1/2

~ 21 MeV

A cylinder around the
shower axis with radius
rmol contains 90% of the
shower energy.

NKG formalism allows a fast, semi-analytical simulation of electromagnetic sub-showers.
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Limitations of NKG:Limitations of NKG:
Ne : number of electrons down to energy 0 is unphysical.

When realistic detector thresholds are used up to 30% difference.

Also purely electromagnetic showers contain some muonic / hadronic component.

γ p γ µ+µ- (suppressed, but nevertheless there)

no fluctuations

no info on gammas

no info on particle times and directions
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negative: 40 x slower than NKG version,
but the quality of the results is worth the while.

Electron Gamma Shower Code Nelson et al. ~1970

ALL processes of electrons and gammas are included.

bremsstrahlung, ionisation, d-electrons, Bhabha & Moeller scattering,
multiple scattering, annihilation, ...

e+e- pair production, Compton effect, photo effect, Rayleigh scattering, ...

based on QED calculations and is very well checked and verified.

extended by LPM effect (> TeV in dense materials; > 1018 eV in atmosphere)

EGS gives precise predictions of all sorts of electromagnetic interactions in materials.

negative: 40 x slower than NKG version,
but the quality of the results is worth the while.

Full 4-dim simulation with EGSFull 4-dim simulation with EGS
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Random NumbersRandom Numbers
... are of central importance in Monte Carlo methods.

Use random physical processes to create real random numbers?
(e.g. radio active decay, electronic noise, ...)

In principle yes, but ....

MC programs must be reproduceable (e.g. for bug fixing).

Pseudo-Random numbers:
they are produced by a predictable algorithm
but behave in all respects like random numbers.

(all digits, all combinations of digits appear with equal probability,
there are no correlations within the sequence)

Computers are deterministic machines,
i.e. computer generated random number sequences are not really random
and Computer sequences have a finite sequence length (period)

It is an art to produce good random numbers !
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Uniform Random Number GeneratorUniform Random Number Generator

0 1

uniform probability in range 0, ... 1.

Simple example: linear congruent generator

Ij = a (Ij-1 + c) mod m uj = Ij / m 3 parameters: a, c, m
I0 : seed

I1, I2, ... are integers between 0 and m-1
uj is a real number between 0 and 1

The maximum period is m, but real period depends on a and c. typical: 105 ... 1011

not enough for serious applications.

Random numbers from this generator are not uncorrelated:
k-tupels of random numbers lie in k-dim space on (k-1)-dim hyper planes

Less significant bits are usually less random
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better: Fibonacci generator

un = (un-24 +un-55) mod 1 n> 55 period : > 255 ~ 1018

to be initialised with u1 ... u55 still not sufficient.

modern generators combine simpler methods:

1) Combine two random numbers (from different generators) with “+”, “-”, or “exclusive OR”.

2) A sequence of random numbers from generator 1 is stored in a memory.
A random number of generator 2 is used as address of the next random number in the memory.

Used in CORSIKA: RANMAR (CERNLIB)

32-bit floating point numbers between 0 and 1.

900.000.000 different sequences of ~2144 = 1043 period length

There are even better ones:

... but the better the random number generator, the slower it is.

About 30% of the computing time of CORSIKA goes into calculation of random numbers !
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f(x)

x

F(x)

x

1
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Generators for Arbitrary DistributionsGenerators for Arbitrary Distributions
create random numbers according to the probability distribution f(x)

Method 1: inverse integral method

F(x) = f(x) dx

by construction F(x) ranges between 0 and 1, if f(x) is a probability density.

If we draw u = F(x) at random from a uniform distribution and find z = F-1(u)
then z is distributed like f(x).

e.g. exponential distribution: f(x) = λ exp(-λx)

u = F(x) = 1 - exp(-λx)

z = - ln(1-u) / λ or
z = - ln(u) / λ

Only one call to uniform generator gives u
then z is exponentially distributed.

8-
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What if we cannot compute F-1(x) ?What if we cannot compute F-1(x) ?

Method 2: brute-force method

draw x at random from a uniform
distribution between (xmin, xmax)
draw y at random from a uniform
distribution between (ymin, ymax)
if y < f(x) accept x as random number
if y > f(x) reject x and start over again

X will be distributed like f(x), but at least 2 calls for uniformly distributed
random numbers are necessary.

The rejection makes this method even more inefficient.

The larger the white area the more rejections will happen.

xmax

f(x)

xmin x
ymin

ymax

y



Johannes Knapp, Arequipa 2008

Gaussian DistributionGaussian Distribution

... is very important: if many independent little variations contribute to one variable
then it is following a Gaussian distribution

i.e. z = uj - 6 will produce a distribution of z that is about Gaussian,
but needs 12 calls for uniform random numbers.

A better way:
1) create 2 uniformly distributed random numbers u1 and u2
2) v1 = 2 u1 -1 uniformly distributed in (-1,1)

v2 = 2 u2 -1

3) r2 = v1
2 + v2

2

if r > 1 then goto 1)
if r < 1 continue

4) z1/2 = v1/2 are two independent and Gaussian distributed random numbers
with mean 0 and standard deviation 1

To get a Gaussian with mean m and standard deviation s
compute Z1/2 = z1/2

. s + m

f(x) = exp( - )

Gaussian with mean µ and standard deviation σ

1
2π σ

(x-µ)2
2σ2

Σ
j=1,12

-2 ln r2

r2
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Quasi-Random Number Generators
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Quasi-Random Number Generators

Sometimes one wants to map out a value range faster and more uniform
than with pseudo-random numbers.

Quasi-Random numbers are constructed to fill a given space as uniformly as possible.
(i.e. to avoid clusters)

e.g. Sobol Generator:

Exhibits reduced fluctuations as comapred to pseudo-random generators.

Therefore usually not used often in Monte Carlo.
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Sobol Quasi-Random Generator vs Pseudo-Random Generator: 30 evtsSobol Quasi-Random Generator vs Pseudo-Random Generator: 30 evts



Johannes Knapp, Arequipa 2008

Sobol Quasi-Random Generator vs Pseudo-Random Generator: 300 evtsSobol Quasi-Random Generator vs Pseudo-Random Generator: 300 evts
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Sobol Quasi-Random Generator vs Pseudo-Random Generator: 3000 evtsSobol Quasi-Random Generator vs Pseudo-Random Generator: 3000 evts
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Monte Carlo PitfallsMonte Carlo Pitfalls

beware of bad random number generators
not random, too short sequence, correlations

rounding errors
e.g. emission angles at high energies

steeply falling distributions
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Summary:Summary:

Monte Carlo Simulations provide a powerful tool
for many parts of science and engineering,
especially when statistical processes are involved.

MC Methods are prone to subtle errors,
due to random numbers and finite numerical precision.
Therefore, they need careful testing.

Nevertheless, MCs are undispensible for
Air Shower analysis and experiment design.
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